
Resource and Locality Awareness in an
Incentive-based P2P Live Streaming System

Fabio Pianese
fabio.pianese@orange-ftgroup.com

Diego Perino
diego.perino@orange-ftgroup.com

France Telecom - Division R&D
F-92794, Issy-les-Moulineaux, France

ABSTRACT
One of the main challenges in P2P live streaming is the
efficient allocation of the available resources. This paper
presents an experimental evaluation of the effects of a local
pairwise incentive mechanism applied to an unstructured
mesh-based architecture. We focus on the relationship be-
tween resource availability in the system and the average
quality of its data distribution paths, both in terms of band-
width efficiency and awareness to network locality. We show
via large scale testbed experiments based on the PULSE
live streaming system that the introduction of appropriate
incentive-based policies as the main peer selection mecha-
nism can lead to a global content distribution mesh which
has properties similar to tree-based structured systems.

1. INTRODUCTION
In the last few years, peer-to-peer networks for live stream-

ing have attracted a lot of interest. It has been a common
opinion for some time to date [1][2] that the current Inter-
net infrastructure can support live streaming via an ade-
quate application-layer protocol, without the need for a na-
tive multicast transport-layer infrastructure. Moreover, the
main advantage peer-to-peer approaches can offer over the
standard, multiple-unicast centralized solutions, is the abil-
ity to exploit the bandwidth capacity that is provided by the
users. This feature alleviates the need for high-bandwidth
access links at the streaming source, and theoretically al-
lows the user population to scale to arbitrary sizes since
both system capacity and bandwidth requirements increase
at the same pace.

Today, while the speed of broadband commercial Inter-
net access is largely sufficient for the downlink requirements
of many current streaming applications, most typical up-
link capacities are still not sufficient to support even a small
number of unicast fixed-rate streams [3]. However, in prac-
tice, the bandwidth provided by each user can be lower than
the stream rate, and a widespread lack of user contribution
can disrupt the normal system operation. Also, users can
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join or leave the system at any time, and rapid changes in
membership require a prompt reaction by the system to in-
sure a steady streaming service to the remaining population.

While low uplink rates do not significantly affect the op-
eration of bulk file distribution systems, e.g. BitTorrent [4],
and can just increase the startup delay of video-on-demand
(VoD) streaming systems, live streaming applications have
more stringent capacity requirements, as they need to re-
ceive data at an average rate exactly equal to the media rate
for the playback to be stable. Buffering helps to overcome
brief capacity shortages in exchange for an increased initial
playback delay, but, eventually, buffers get empty and play-
back stops. Unlike VoD, where the playback can be stopped
and resumed without problems, the playback delay of a live
stream monotonically increases without explicit bounds, un-
til the data that have to be played are too outdated to be
available any longer. The total available serving capacity of
a live streaming system where all users receive a full service
must thus be, in average, equal or greater than the capacity
required to replicate the stream to all the nodes.

The main challenge for a live streaming system is exploit-
ing the available bandwidth in a way that leads to timely
data delivery. Thus, the available node capacity has to be
carefully allocated: it is generally desirable that the path
that data have to follow in the system be as short as pos-
sible, and that data exchanges be made preferably between
nodes that are placed ’close by’ in the underlying transport
network, to reduce the redundant use of long-haul network
links while also helping improve the delay of the data paths.

We designed and implemented PULSE [5] with the in-
tent of building a peer-to-peer system capable to support
live media streaming under realistic conditions. This goal
guided us in our choice of an unstructured mesh-based design
where the interactions between the nodes are independently
determined only using incentive-based local selection criteria
iterated on a short timescale. The resulting system is there-
fore dynamic, since the future state of the system is deter-
mined by the current data exchanges among the nodes: the
progress of data reception is then at the same time an index
of streaming performance (i.e. the average delay needed for
a piece of data to get to the node, counted from the time it
was generated at the source) and the main feedback variable
upon which nodes can choose their exchange partners (i.e.
a measure of the interest in the other peer for a possible
future interaction). The presence of a delay-based feedback
loop that is not restricted by structural constraints enables
the PULSE mesh to adapt to the current global availability
of resources in the system.



The main purpose of this paper is to explore the effect of
the simple incentive-based local peer selection policy used
in PULSE on the global organization of its data-exchange
mesh. Our analysis is based on experimental traces obtained
by running the PULSE prototype node on few hundreds
PlanetLab nodes, and is integrated with references to re-
sults from a testbed platform [10] when more controlled
conditions are required. Because of space constraints, in
this paper we only deal with scenarios where peer member-
ship is constant and the system is operating at steady state:
we argue that, as the PULSE mesh lacks a fixed structure
and constantly evolves over time, the use of scenarios where
more instability is introduced by node churn does not add
new insights relevant to the main subject of this work.

We will focus our analysis on the twin themes of resource
and locality awareness in a peer-to-peer live streaming sys-
tem: a) we study the correlation between a node’s upload
bandwidth contribution and its reception performance, b)
we measure the average hop-count properties of the data
paths observed during stable system operation, and c) we
test the global effects of introducing a simple latency bias
parameter on the local peer selection policy.

The contributions we make in this paper are the following:
1) We empirically confirm the widespread belief that the

use of incentives as a peer selection policy can lead to the
creation of clusters of nodes with similar performance. In-
centives, as used in the PULSE system, produce a dynamic
mesh with nodes ordered by bandwidth which can meet the
constraints of live streaming.

2) We show one fundamental advantage of unstructured
mesh-based systems: flexibility. The lack of structural con-
straints in PULSE allows us to perform global optimizations
in a distributed, recursive way, by way of small modifications
in the peer selection criteria.

This paper is organized as follows. In Section 2, we present
a short background on the use of incentive techniques in
the context of peer-to-peer live streaming systems. Then, in
Section 3, we briefly introduce the definitions and details re-
quired to support the subsequent evaluation of PULSE: our
analysis, which is based on data traces from instrumented
nodes running on testbed environments, is divided into two
parts: a study of the adaptiveness of the system to resource
availability, in Section 4, and of its awareness to network
locality, in Section 5. Finally, we conclude in Section 6.

2. INCENTIVES AND RELATED WORK
The use of incentive mechanisms to encourage contribu-

tion in peer-to-peer systems was introduced in relatively re-
cent times. The first remarkable example of incentive-based
peer-to-peer system, BitTorrent [4], has clearly shown the
potential of this class of mechanisms to support the opera-
tion of distributed systems. BitTorrent is a mesh-based bulk
content distribution system where the data-exchange part-
ners of a node are decided using a local altruistic tit-for-tat
(TFT) policy. This policy amounts to choosing a fixed num-
ber of nodes which contributed the most during the previous
few seconds, plus one random node, as the designated tar-
gets of data exchange for the next few seconds.

Until 2004, the debate in the field of live media stream-
ing had been revolving mainly around the evaluation of
the properties of different structured approaches in coop-
erative environments under node churn. The achievements
of BitTorrent had quickly a noticeable impact: it became

soon evident [6] that encouraging cooperation and altruism
between nodes were key aspects of a successful streaming
architecture. At the same time, early examples of mesh-
based data-driven systems began to make their appearance:
DONET/Coolstreaming [7] first advanced the claim that an
unstructured system could perform in a way comparable to
structured single-tree based approaches. Moreover, the ad-
vantages offered by mesh-based systems were shown to be
an increased resilience to churn and the possibility of recur-
sively optimizing the overlay mesh over time without any
noticeable playback disruption.

Incentives to share have recently been adapted to work
with structured and unstructured streaming systems. The
use of strict pairwise incentives on structured architectures
has shown results that are somewhat disappointing [8]. We
still believe that incentives can have a fundamental role in
a P2P streaming context: however, rather than employing
them to enforce a fair retribution policy, we argue that they
can be exploited more effectively as a criterion to optimize
the structure of the streaming overlay. The use of pairwise
incentives as the base peer-selection mechanism is the main
original aspect of PULSE [5], but also appears as an im-
portant component of other unstructured systems, such as
Chunkyspread [2], whose stated goal is to support node pop-
ulations with heterogeneous resources under node churn.

Today, practical peer-to-peer systems for distributing live
media over the Internet are still in their infancy, as only
few actual applications have been deployed on a scale suffi-
cient to perform meaningful evaluation: Coolstreaming and
PPLive seem to be the two more relevant examples. The
algorithms of Coolstreaming are public, and a limited per-
formance study has been undertaken by the authors [7]: the
drawback of this system seems to be its lack of awareness to
network locality. The source code of PPLive, on the other
hand, is not available, so the details of the algorithms are
unknown. However, it is currently unclear even whether
PPLive has mechanisms in place to detect and adapt to the
underlying network conditions, as all we know about this
system was deduced from measurement studies [9].

3. PULSE AND ITS INCENTIVES
The main incentive mechanism used in PULSE closely fol-

lows the peer selection mechanism used in BitTorrent, with
the changes required to support the strict timing constraints
of live streaming. For practical reasons, the core incentive
has been coupled with additional mechanisms that increase
the robustness of the system to temporary resource short-
ages and that encourage an efficient altruistic contribution
by resource-rich peers1. In this section, we will introduce the
appropriate terminology to deal with PULSE and describe
in detail how the incentive-based peer selection works.

3.1 Definitions
In PULSE, all nodes (or peers) are identical in role, ex-

cept the source, that is the node distributing the stream
for the first time. The source divides the original media

1As our analysis is principally focused on the effect of in-
centives on live streaming performance, we will describe in
depth the main selection technique used in PULSE (origi-
nally called missing selection) while leaving out the details
about all other mechanisms. Interested readers can refer to
[5] for a description of the whole system, which lies out of
the scope of this paper.



Parameter Value Description

W 32 Length of buffer sliding window (chunks)

TW 64 Total length of trading window (chunks)

LRmax 20% FEC tolerance to chunk losses/window

TD 250 Min lag to trigger buffer reset (chunks)

EPOCH 2 Time b/w subsequent peer selections (s)

NT F T 4 Peers chosen w/ optimistic TFT incentive

CR 8 Rate of chunk generation @source (s−1)

SBR 256 FEC-encoded stream bit rate (Kbit/s)

RT O 0.5 Timeout of chunk request messages (s)

Rmax 2 Max outstanding requests to same peer

Table 1: PULSE Protocol Parameters

stream into a series of FEC-encoded pieces (called chunks)
and sends them to the other peers with a constant rate.
Peers must then exchange pieces in order to retrieve a com-
plete series of chunks and recover the original media. Every
peer has a buffer, where it stores the chunks it receives prior
to playback. Table 1 lists the main buffer parameters.

The buffer of a PULSE node uses a mechanism based on
a sliding window of W chunks to regulate the data reception
process. The purpose of this mechanism is to allow chunk
losses to happen when they can be compensated (using FEC,
with a maximum allowed loss rate of LRmax that is chosen
by the source) without any loss of quality, and to adapt the
buffer progression to the actual state of chunk reception. In
any moment, a peer is only interested in obtaining chunks
from a limited contiguous region, named Trading Window
(TW), which includes the sliding window. The TW region
can then move forward to include more recent chunks from
the stream only when the sliding window inside it contains
enough data to allow the recovery of the media from its
FEC coding. We will call the delay between the source’s
TW (i.e. where new chunks are introduced in the system)
and a node’s TW as node lag, and represent its running
average value as TB .

The main difference between live streaming and bulk data
distribution (where all peers share an interest in a same set
of data, i.e. the entire file) is the dependence of the in-
terest for data on the current stream reception status of a
peer, which can change over time. This difference has to
be considered when peer selection is performed. The main
incentive mechanism in PULSE adapts the optimistic TFT
strategy from BitTorrent to support the strict timing con-
straints of live streaming.

3.2 The Incentive Mechanism
Live streaming requires timely reception of recent data.

Thus, the TB value of a remote node is a fundamental piece
of information for any peer to determine whether the remote
node can provide data chunks that are useful to progress,
and whether the remote node is interested in the benefits
of a pairing. Reciprocal interest in the stream data can be
represented as the integral of the product between the areas
of interest of the two nodes. As the TW length is a fixed,
system-wide parameter, we can estimate the reciprocal in-
terest I of two peers a and b as a function of the difference
in their lag: I(a, b) = TW −|TB(a) − TB(b)| = TW −∆TB .

Another factor that is also relevant to the good choice of
exchange partners is the pairwise link latency L(a, b). In a
data-driven system, nodes have to actively negotiate before

Classes \ Scenario HH-LB LH-LB

Very Rich (VR) 4%, 4*CR (2Mbps) -

Rich (R) 20%, 2*CR (1Mbps) 20%, 2*CR (1Mbps)

Normal (N) 21%, CR (512Kbps) 80%, CR (512Kbps)

Poor (P) 55%, CR/2 (256Kbps) -

Table 2: Upload Bandwidth Distribution Scenarios

data transfers are performed, to avoid unnecessary chunk
duplication. The latency first comes into play when a chunk
request is propagated to a partner node, and adds once again
for the partner’s reply to be received. Also, an estimate of
this value is easy to obtain at any peer using simple tech-
niques. It is thus perfectly reasonable to treat latency as
a factor that directly affects the amount reciprocal interest,
as more latency causes a reduction in the range of data that
can be requested by either peer to their exchange partner (if
we suppose that both trading windows are moving forward
at the same speed). We then define a latency-biased inter-
est function BI(a, b) = I(a, b) − C · L(a, b), where the C
parameter is called the latency weight.

At each EPOCH, the NTFT data connections opened by
all nodes are renegotiated. At every peer except the source,
NTFT − 1 connections are allocated to the nodes that have
contributed the most during the previous EPOCH. For the
remaining slot, all known nodes are ordered by decreasing
latency-biased interest BI, and the highest-ranked is se-
lected. At the source, which does not receive data from the
other nodes and thus cannot rely on the pairwise incentive,
peer selection is performed by randomly choosing partners
among the nodes with the lowest TB .

4. RESOURCE AWARENESS
We performed experiments with our PULSE system to

evaluate the effect of its incentive on the organization of
its data-exchange mesh. Our first goal is to evaluate the
correlations between bandwidth availability at the nodes
and their behavior, in terms of their reception lag and their
choice of exchange partners. For this reason, in all the fol-
lowing experiments, the latency weight is always C = 0.

4.1 Correlating Node Lag to Node Upload
We defined two bandwidth scenarios that approximate re-

alistic worst-case operating conditions. In these scenarios,
nodes belong to different bandwidth classes: the nodes from
each class have had their upload contribution limited to a
certain rate, while all download speeds are unrestricted. We
run the emulations on our testbed, and then collect and
aggregate the results, trying to establish correlations be-
tween node behavior and affiliation to a particular band-
width class. For this experience, we used a population of
800 testbed nodes. The most important system parameters
were set in a similar way as we did in [5] (see Table 1) to
allow for an easy direct comparison with results from pre-
liminary simulations. The scenarios are defined in Table 2:

HH-LB (High Heterogeneity, Low Bandwidth): this sce-
nario corresponds to a very pessimistic bandwidth distribu-
tion: not only the upload capacities are heavily asymmetric,
but more than half of the nodes can contribute no more than
one half of the original stream bitrate. The percentages are
loosely inspired by the results of the study by Sariou et al.
on Gnutella peers [3] that showed an approximative power-
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Figure 1: Average Class Lag over Time in HH-LB
(l) and LH-LB (r)

law distribution of upload capacities higher than 10 Kbps.
The Resource Index of this configuration (as defined in [1])
is about 1.04, meaning that there is barely enough capacity
to serve a complete stream to the whole node population.

LH-LB (Low Heterogeneity, Low Bandwidth): this sce-
nario portrays a system with a Resource Index of about
1.20, where the bandwidth excess is evenly split among a
minority of the population. The challenge in this scenario
is given by the small difference of capacity between the two
classes, and the relative scarcity of bandwidth.

All nodes join the session at roughly the same time (about
2 sec are required to launch the 800 peers in our setup),
and they keep running indefinitely. Data are collected long
enough for the system to reach and operate at steady state.

In Figure 1, we plot the per-class average over time of
a node’s TB for a typical run, under HH-LB and LH-LB
scenarios respectively. The most striking result conveyed
by Figure 1 is the strong relationship between the available
upload bandwidth of a class and the average lag of its mem-
bers: peers with the highest bandwidth contribution reach
in both cases a steady-state lag of about 20 chunks (that is,
less than 3 sec) from the media source. On the other hand,
the less a class contributes, the worse its average lag: the
POOR class in HH-LB gets the highest average lag among
the four, at nearly 60 chunks (slightly more than 7 sec). Vi-
sually, the plot for HH-LB is especially telling, as the four
classes appear sorted by resources and layered one after the
other, with a meaningful difference between the average lag
performance of each class: also, we notice that the lag differ-
ence becomes higher when a class’ available upload capacity
is smaller than the stream bandwidth. The same remarks can
be made about the LH-LB scenario, as the lag difference of
the two classes is smaller but still evident (18 chunks or 2.2
sec for RICH, 30 chunks or about 4 sec for NORMAL).

Figure 1 also depicts the lag variance as vertical lines.
Interestingly, the variance for all classes also quickly con-
verges to a stable value, which is again related to the up-
load contribution: the variance of TB becomes higher as the
upload bandwidth available to each class decreases. This
can be seen both in the HH-LB and in the LH-LB scenarios:
the correlation between upload capacity and lag stability
is evident, resulting in a much lower standard deviation of
lag performance for the resourceful classes (4-10 chunks for
VERY RICH and RICH, vs. 10-25 chunks for NORMAL

 0
 30
 60
 90

 120
 150
 180

 0  100  200  300  400  500  600  700  800

La
g 

[c
hu

nk
s]

Time [s]

Node Lag over Time (from 10th to 90th percentile)

 0
 30
 60
 90

 120
 150
 180

 0  0.5  1  1.5  2  2.5  3  3.5Av
g 

La
g 

[c
hu

nk
s]

Data Uploaded (wrt stream rate)

Relationship between Node Lag and Average Upload

Figure 2: Results of an Uncontrolled PULSE Run
on PlanetLab (200 nodes)

and POOR in HH-LB; 4 chunks for RICH vs. 11 chunks for
NORMAL in LH-LB). This suggests that the fact of having
more bandwidth not only reduces the average lag, but also
tends to give nodes a more stable performance in the system.
The analysis of upload and download bandwidth utilization
data (not shown) also confirms the system’s stability: all
classes contribute an average total bandwidth which is al-
most constant over time, and receive chunks at rates that
are always sufficient to reconstruct the original media stream
from its FEC encoding.

The two previous observations are important, as they rep-
resent a tangible benefit that can appeal to rational agents.
It is indeed in the best interest of any node to provide at
least as much bandwidth as it demands, as the typical conse-
quences of doing so result in a better performance, especially
in terms of stability, achieved by nodes that provide suffi-
cient resources. Providing less is allowed, but higher lag and
temporary disconnections should be expected, especially if
the resources in the system become scarce.

4.2 Average Lag vs. Bandwidth Contribution
Next, we performed experiments on PlanetLab in order to

confirm the behavior of the incentive-based selection under
uncontrolled network conditions. In fact, PlanetLab offers
its users little control on the node resources, not only in
terms of an unknown available bandwidth, but also because
of the high CPU load of machines. This problem makes
it especially difficult to test a time-sensitive streaming ap-
plication that requires low response times. For this rea-
son, we just managed to obtain about 200 hosts with semi-
acceptable CPU load conditions, while we had to lower the
chunk rate (CR) to 4 chunks per second and the stream
bitrate (SBR) to 128 Kbps. We did not limit the node
bandwidth but chose to leave it naturally limited by the
resources available at each host, since the high CPU load in
most PlanetLab nodes would also slow down the execution
of the software in unpredictable ways.

The results show that the use of an incentive-based se-
lection allows PULSE to behave reasonably well even on
this difficult environment, proving a high level of resilience
and adaptiveness. Looking at Figure 2, it can be noticed
that 90% of peers manage to regularly obtain a TB lower
than about 100 chunks (25 seconds), and that 50% present
a node lag lower than 30 chunks (less than 10 seconds). The



Tree Analysis 

 3
 5
 7
 9

 11
 13
 15
 17

 200  600  1000  1400  1800  2200M
ax

 D
ep

th
 [h

op
s]

Chunk ID

HH-LB
LH-LB

 0
 30
 60
 90

 120
 150

 0  2  4  6  8  10  12  14Av
g 

W
id

th
 [n

od
es

]

Layer

HH-LB
LH-LB

Figure 3: Analysis of Average Chunk Distribution
Tree Properties

Layer 1 2 3 4 5 6 7 8

% VR 3 20 21 15 7 2 1 0
% R 15 35 40 41 34 18 6 2
% N 19 21 20 20 24 27 18 8
% P 62 24 19 24 35 53 76 90

Table 3: Average Observed Composition of Distri-
bution Tree Layers by Bandwidth Class (HH-LB)

TB distribution is a consequence of the upload bandwidth
distribution, as about 60% of peers offer less than the full
stream rate while the other 40% upload at a rate lower than
twice the stream rate. By correlating the total bandwidth
contribution with the average lag of the nodes, we can ob-
tain in Figure 2 a clear inverse relationship between the two
variables: the more a peer uploads, the lower is its lag.

4.3 Bandwidth Classes and Data Paths
We have seen above that the position of the nodes in the

incentive-generated data exchange mesh is related to their
bandwidth contribution: we are now interested in analyzing
what is the specific impact of this global node placement
on the distribution process of individual data chunks. To
this end, we will study the paths taken by data chunks as
they are replicated by the nodes. As no duplicate chunks
are allowed, the resulting directed distribution graphs for
each chunk are free of cycles (i.e. single trees). The average
properties of these trees (width, depth) can provide precious
insights to complete our observations on node lag.

We show the analysis of the average properties of chunk
distribution trees from our testbed emulations in Figure 3.
We notice that the maximum tree depth2 in hops for indi-
vidual chunks is short and quite stable over time. In our
system with 800 nodes, maximum tree depths are in aver-
age between 11 and 14 hops, for both bandwidth scenarios.
Without any explicit structural guidance, the paths taken by
the chunks were consistently good, even under a widespread

2Chunk distribution trees obviously only include nodes that
receive a certain data chunk, thus the number of nodes in
a tree can change on a chunk-by-chunk basis. However, the
protocol mechanisms guarantee that connected nodes can
never lose in percentage more than the the FEC rate (in our
case, 20%), and bandwidth traces show that they actually
lose much less.

Lag vs Average TFT Connection Delay
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Figure 4: Effect of Latency Bias on Cumulative Con-
nection Latency

bandwidth scarcity and while the data connections between
nodes were being continuously renegotiated. More informa-
tion can be gathered by the statistics on tree width: from
Figure 3 we can appreciate the fact that the first few layers
of the trees are in average very wide, and that the average
percentage of nodes that find themselves placed in the last
few layers of the trees is low (<20%). Also, the variance of
layer width is high for the first few layers, with a standard
deviation in the order of up to 30% of the average value.

Several intriguing details can be also seen in Figure 3, if
we look more closely: we can notice how HH-LB trees are in
average a little shorter than LH-LB trees, despite the fact
that the Resource Index for the HH-LB scenario is lower
than for LH-LB. Average tree widths are also very similar,
especially in the first few layers, where HH-LB tops LH-
LB by a small margin. These counter-intuitive observations
can be explained if we take into account the effects of the
incentive-based peer selection mechanism: as we remember
from Section 1, the streaming source randomly selects its
targets for data exchange among the nodes with lowest lag;
we then observed node clustering by upload capacity, with
the richest classes constituting a large fraction of the peers
with low lag values. The net effect of these two combined
mechanisms is that the chunk distribution trees from sce-
narios with high levels of heterogeneity can have very wide
initial layers, due to the richest peers being on top. Wide
initial layers are very important in the context of live media
distribution, since they reduce considerably the maximum
number of hops a chunk has to traverse to reach all the
nodes. To verify our conjecture, we analyze in Table 3 the
average placement of nodes that belong to each bandwidth
class in the chunk distribution trees (the data we use are
taken from a simulated HH-LB scenario). We can observe
that there is indeed a preponderant presence of peers from
the richest classes in the few first layers, especially between
layer two and five, where roughly half of the peers have the
necessary resources to replicate each chunk more than once
and up to four times.

5. LATENCY AWARENESS
After examining the macroscopic effect of a loose TFT

incentive on the global system organization, we now study
the impact of a weighted latency bias on the system in terms
of locality awareness. These experiments were performed
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Figure 5: Effect of Latency Bias on Overall Data
Exchange Locality

on Planetlab using a population of 100 peers without any
artificial upload limitation. We observed the behavior of
the PULSE system as the C latency weight parameter was
set to 0 and 1. To define the locality metric, we measured
the pairwise node latencies during our experiments using
exponentially-spaced ping probes (λ = 10s).

Figure 4 shows the cumulative latency of the incentive-
driven connections in function of the average lag of each
peer. Cumulative latency is computed for each single node
by adding together the latencies of the four connections that
it established using the biased TFT incentive, and averaging
this value over time. It is possible to notice how the intro-
duction of the latency bias can sharply reduce the average
TFT delay, especially for those peers whose lag is low. We
can see that, when C = 0 (i.e with no latency bias), all peers
show an average cumulative latency uniformly distributed
between 45 ms and 60 ms, regardless of their average lag.
With the addition of a latency bias C = 1, the minimum
average cumulative latency goes down to 22 ms, while just
few nodes maintain a cumulative latency of about 60 ms.
Also, the average cumulative latency of all nodes becomes
lower for non-zero values of C.

In Figure 5 we correlate the percentage of data being up-
loaded by each peer with the latencies of the connections
that it is using, again averaged over the time. The his-
tograms clearly show that locality of data exchange defi-
nitely increases if we add a latency bias: when C = 0, the
data is sent to other peers in an almost uniform way (we
remember that the latency distribution of the peers is not
uniform). On the contrary, when C = 1, the amount that
has to travel on shorter distances is much higher: the stream
data are prevalently exchanged between peers with pairwise
latencies lower than 125 ms. Finally, Table 4 shows the
effects of latency awareness on the global performance of
data reception in the system, in terms of percentile node
lag. As we expected, with the latency bias peers achieve a
slightly lower reception delay, thanks to the fact that chunks
are sent more often to peers which are closer locality-wise.
The extent of this reduction is quite small, however, as the
skew in the node latency distribution is quite limited. We
expect that, by introducing the latency bias in a scenario
with larger difference between pairwise node latencies, the
reception delay reduction would also be more significant.

Lag Percentile 10% 30% 50% 70% 90%

C=0 12.31 18.10 26.18 37.70 61.08
C=1 10.53 14.47 18.89 27.22 49.39

Table 4: Effect of Latency Bias on Average Node
Lag (in chunks)

6. CONCLUSIONS
In this paper, we analyzed the effects of a simple pair-

wise incentive on the organization of an unstructured peer-
to-peer system for live streaming using experiments. Our
results confirm that incentive-based peer selection policies
are able to support heterogeneous resource availability in a
distributed system. We also showed that an appropriate use
of incentives allows to build unstructured systems that are
comparable to tree-based systems in terms of data distribu-
tion performance. The main benefit of an incentive-based
system lies in its higher flexibility and adaptiveness to net-
work conditions: here we focused our attention on resource
and locality awareness only, but other desirable properties,
such as high resilience to churn, can also be obtained with
the same technique.

The analysis we performed in this paper was based on
PULSE, a dynamical mesh-based approach to live streaming
which relies on a feedback-driven incentive mechanism as
its main peer selection strategy. We are currently working
to the deployment of PULSE on the Internet, in order to
gather data traces from user activity and to further explore
the performance of this system in a production environment.
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