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Abstract—Content-centric networking proposals, as Parc’s
CCN, have recently emerged to define new network architectures
where content, and not its location, becomes the core of the
communication model. These new paradigms push data storage
and delivery at network layer and are designed to better deal
with current Internet usage, mainly centered around content dis-
semination and retrieval. In this paper, we develop an analytical
model of CCN in-network storage and receiver-driven transport,
that more generally applies to a class of content ori ented
networks identified by chunk-based communication. We derive
a closed-form expression for the mean stationary throughput as
a function of hit/miss probabilities at the caches along the path,
of content popularity and of content/cache size. Our analytical
results, supported by chunk level simulations, can be used to
analyze fundamental trade-offs in current CCN architecture, and
provide an essential building block for the design and evaluation
of enhanced CCN protocols.

I. INTRODUCTION

Internet usage has significantly evolved in the last years,
and today is mostly centered around content dissemination and
retrieval. We assist to an exponential growth of digital infor-
mation diffused over the Internet, eased by cheaper storage and
bandwidth supports, and driven by the increasing popularity of
highly demanding services, such as cloud computing or video
delivery. On the other hand, Internet architecture is still based
on the end-to-end model and appears to be unsuited to deal
with the aforementioned trends. A large range of over-the-top
solutions, like Content Delivery Networks (CDNs), have been
designed and widely deployed to overcome this mismatch at
application layer, and today carry a large fraction of Internet
traffic.

In parallel, significant research projects have been funded in
the last years focusing on the definition of novel architectures
for the future Internet (e.g. US NSF GENI or EU FIA). In this
research arena, content-centric proposals, as Parc’s CCN [1],
PSIRP (now in PURSUIT 1), or DONA [2], aim at redesigning
the Internet architecture with named data as the central element
of the communication paradigm, instead of its physical loca-
tion. These proposals radically change data transfer by pushing
content storage and delivery at network layer itself. Content-
centric networks are in fact characterized by receiver-driven
transport protocols (query or pull based), where data is only
sent in response to users’ request, and packet-level caching
which is transparently performed at every node. Specifically,
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a content is split into a sequence of chunks2 uniquely identified
and independently requested by the receiver through explicit
per-chunk requests. Data packets flow down to the receiver
following the reverse path of requests and are cached by
intermediate network nodes. These are distinctive features of
content-centric architectures and play a fundamental role on
system performance.

A challenging problem is to analytically characterize data
transfer in CCN given the complex interplay between receiver-
driven transport and per-chunk caching. Even for a single stor-
age node employing LRU (Least Recently Used) replacement
policy, the analysis of cache dynamics under such request
process is not straightforward. When the scenario under study
is a network of caches operating under CCN principles,
different modeling issues arise. The output process of the first
node, that is the process of missing chunk requests, needs to
be precisely modeled in order to define the modified request
process feeding upstream caches.

Transport performance is affected by caching dynamics and
a unified modeling framework is necessary to evaluate data
transfer as well as to guide the design of optimized CCN
protocols. To the best of our knowledge this is the first attempt
to analytically study chunk-based data transfer in a network of
caches as CCN. Our results apply more generally to chunk-
based content delivery networks based on similar transport
principles. For instance, in chunk-based CDNs, as Coblitz [3]
or Anycast CDN [4], the transport principles appear similar,
however designed for different contexts. These are application-
layer solutions making use of HTTP range requests to retrieve
chunks of content that are stored in network web caches or
different servers.

The main contributions of the paper are the following: (i)
an analytical model of the single cache miss probability and,
hence, miss rate under a two levels Markov Modulated Rate
Process (MMRP) of requests with Zipf-distributed content
popularity; (ii) a model for a network of caches with and
without request aggregation; (iii) a characterization of the
stationary throughput and hence of content delivery time as a
result of previous analysis; (iv) an assessment of model results
via chunk-level simulations.

The rest of the paper is organized as follows. Sec. II
provides system description. Sec.III is devoted to related
work, while Sec. IV introduces notation and main modeling

2Chunks are intended to be packet-size entities in content centric networks.



assumptions. In Sec. V we report the main analytical results
about single cache dynamics, while in Sec. VI we extend the
model to the network case and provide explicit formulae for
stationary throughput. Sec. VII presents an example of model
application while Sec. VIII concludes the paper.

II. SYSTEM DESCRIPTION

In this paper we primarily focus on the content-centric
networking (CCN) proposal by Parc [1], though the modeling
framework has broader applicability. Let us briefly describe
how such systems work. Content items are split into chunks
uniquely identified by a name, and permanently stored in one
(or more) repository. Users can retrieve them using a receiver-
driven transport protocol based on per-chunk queries triggering
data chunk delivery. A name-based routing protocol guarantees
that queries are properly routed towards data repository. Every
intermediate node keeps track of pending queries, in order
to deliver the requested chunks back to the receiver and
temporarily cache data chunks in a LRU managed cache.
In addition, intermediate nodes perform request aggregation
(also denoted as filtering throughout the paper), i.e. avoid
forwarding multiple requests for the same chunk while the
first one is pending.

Data may come from the repository or from any hitting
cache, that is a cache with a temporary copy of the data
chunk, along the path. Chunks of the same content can
therefore be retrieved from multiple locations with different
round trip times (RTTs), affecting the delivery performance.
The resulting throughput and hence content delivery time are
strongly affected by this notion of average distance between
the user and the chunks of the requested content, which we
will explicitly define as virtual round trip time (VRTT) in
analogy with connection-based transport protocols like TCP.

III. RELATED WORK

Previous work on content-centric networks has mainly fo-
cused on global architecture design [1], [2] while less effort
has been devoted to analyze caching and transport mechanisms
in such architectures. More recently, Somaya et al. [5] analyze
the feasibility of caching in routers at line-speed, while Lee et
al. [6] consider the benefits of CCN in-network storage in
terms of energy efficiency with respect to traditional distribu-
tion architectures. Also, Carofiglio et al. show the role played
by storage management in CCN by means of experimental
evaluation [7]. However, none of the aforementioned work pro-
vides an analytical characterization of transport performance,
and its interaction with chunk-level caching dynamics. In the
context of Web caching there have been previous attempts
to model content-level cache dynamics, most of them related
to a single cache scenario under LRU replacement policy.
The majority of analytical models of LRU caches start from
the relation between the LRU miss probability, and the tail
of the search cost distribution for the Move-To-Front (MTF)
searching algorithm [8]. In [9] an integral expression for the
Laplace transform of the search cost distribution function is

derived, that needs to be numerically integrated with complex-
ity proportional to the cache size and the number of content
items. Alternative combinatorial approaches are developed in
[10]-[11]. In [12], authors give an asymptotic characterization,
for a large number of content items, of the MTF search cost
distribution and hence of the LRU miss probabilities both in
the light-tailed and in the heavy-tailed case. A recent work
in [13] provides an analytical characterization of the miss
probability and thus miss rate under Poisson assumptions of
content requests’ arrivals. It is worth to remark that almost all
of these prior studies are devoted to the analysis of LRU-based
rules for a single cache and with unit-sized objects. To the
best of our knowledge no attempts have been done to model
LRU cache dynamics (i) at network level, (ii) in chunk-based
systems where content retrieval is receiver-driven, imposing a
certain correlation structure either in the request process and
in cache dynamics.

IV. MODEL DESCRIPTION

A. Assumptions and notation

Using the notation described in table I, in our setting, we
make the following assumptions: (i) We consider a set of
M different content items equally partitioned in K classes
of popularity, i.e. content items of class k are requested with
probability qk, k ≥ 1. The notion of popularity class allows to
group all equivalently popular content items accounted for by
the popularity histograms inferred by network measurements.
In the rest of the paper, we assume a Zipf popularity distri-
bution, hence qk = c/kα, k ≥ 1 with parameter α > 1. (ii)
Content items are segmented into chunks and have different
sizes: σ denotes the average content size in terms of number of
chunks (chunks are fix sized). (iii) Each node in the network
has a cache (also referred to as content store in Parc’s CCN)
of size x chunks. (iv) We focus on different topologies (Fig.1),
meant to represent (segments of) the aggregation network
which gathers a large number of users’ requests over time.
(v) We define virtual round trip time of class k, VRTTk, the
average time that elapses between the dispatch of a chunk
request and the chunk reception in steady state. This variable
plays a similar role to what the round trip time is for TCP
connections in IP networks.

VRTTk =

N∑
i=1

Ri(1− pk(i))

i−1∏
j=1

pk(j), k = 1, . . . ,K (1)

V RTTk is defined as a weighted sum of the round trip delays
Ri associated to node i, where weights correspond to the
stationary hit probabilities (1− pk(i)) to find a chunk of class
k at node i given that a miss was originated by all previous
nodes. Similarly, we define the residual virtual round trip time
at node (level) i as

RVRTTk(i) =

N∑
j=i

(Rj −Ri−1)(1− pk(j))

j−1∏
l=i

pk(l). (2)

RVRTTk(i) at node i > 1 represents the virtual round
trip that one would have if node (level) i would be the first



TABLE I

N Number of network nodes
K Number of different classes
M Number of different content items (m = M/K)
x Cache size
λ, λ(i) Total content request rate at first node, at node i > 1
λk Content request rate for class k w/o filtering
λfk Content request rate for class k with filtering
σ Average content size in number of chunks
qk, qk(i) Popularity distribution for class k at level 1, i
pk(i) Miss probability for class k at node i
pfk(i) Miss probability with filtering for class k at node i
Ri Round trip delay between client and node i
VRTTk Virtual round trip delay of class k w/o filtering
VRTTf

k Virtual round trip delay of class k with filtering
RVRTTk(i) Residual VRTTk at node i w/o filtering
RVRTTf

k(i) Residual VRTTk at node i with filtering
∆,∆k Imposed and effective filtering time window for class k
Xk Chunk delivery rate or throughput of class k

node (level). Clearly, VRTTk = RVRTTk(1). More details are
provided in Sec.VI.

B. Content request process

The content request process is structured in two levels,
content and chunk, which are important to characterize. In
this section we build a fluid model of such two-level request
process capturing the first-order system dynamics in steady
state.

The request arrival process is modeled through a Markov
Modulated Rate Process (MMRP) [14]: requests for content
items in class k are generated according to a Poisson process
of intensity λk = λqk, and the content to be requested is
uniformly chosen among the m different content items in class
k. A content request coincides with the request of the first
chunk of the content. Once a chunk is received, a new chunk
request is emitted and so on until the reception of the last
chunk of the content. The model applies to the more general
case of a window of W > 1 chunks requested in parallel.
Content size (in number of chunks), Nch, is assumed to be
geometrically distributed with mean σ, i.e.
P(Nch = s) = 1

σ

(
1− 1

σ

)s−1
, s ≥ 1. However, chunk-

level simulations outlined that average dynamics do not vary
significantly in presence of heavy-tailed content size distri-
bution with average σ chunks. The inter-arrival between the
requests of two subsequent chunks of the same content is
supposed to be deterministic3 and equal to the average Virtual
Round Trip Time of class k, VRTTk. The superposition of
different content requests defines the MMRP process, whose
underlying Markov chain is represented in [15]. The choice
of a MMRP model is natural within the context of chunk-
based content centric networks: in fact, at content level the
Poisson assumption is motivated by previous work on Internet
traffic modeling at session level, whereas it results to fail at
packet/flow level [16]. At chunk level we suppose to look at
system dynamics in steady state where the cache dynamics and
hence the chunk level rate Xk, k = 1, ...,K, have converged
to a stationary value.

3cfr.[15] for further details about this assumption.

The large number of content requests served by the aggrega-
tion network justifies the fluid assumption behind the MMRP
[14]. It is worth to remark that we do not assume any other
temporal correlation in the input process, but we model the
temporal correlation induced by content request aggregation
(filtering). Such a feature allows to keep trace of the ongoing
requests at each node and avoid forwarding chunk requests
whether a request for the same chunk has been already sent. A
more detailed description of the filtering operation performed
by nodes is given in Sec.V-A.

Fig. 1. Network topologies: cascade (a), binary tree (b).

V. SINGLE CACHE MODEL

Let us now characterize the miss probability in steady state
of class k = 1, ...,K at the first cache, under the content
request process above described. In [13], authors give an
analytical characterization of the miss probability and hence of
the miss rate for the case of a Poisson content request process
when the cardinality of the set of different content items M
tends to infinity. In this section we extend their result to the
case of:

(i) MMRP request process (content/chunk levels) with con-
tent request rate λk = λqk, where qk = c/kα.

(ii) K popularity classes with the same number of content
items m = M/K in each one.

(iii) Non-unitary content size (σ).
(iv) Pending request aggregation (filtering) over a time

interval ∆ (sec.V-A).
Proposition 5.1: Given a MMRP request arrival process as

described in Sec.IV-B with intensity λ, popularity distribution
qk = c

kα , α > 1, c > 0, and average content size σ, be x > 0
the cache size in number of chunks, then the stationary miss
probability for chunks of class k, pk, is given by

pk ≡ pk(1) ∼ e− λ
m qkgx

α

(3)

for large x, where 1/g = λcσαmα−1Γ
(
1− 1

α

)α
.

Due to lack of space we provide here the intuition behind the
proof that the reader can find in [15]. A request for a given
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Fig. 2. Single-cache scenario. Miss probability as a function of class popularity (a); miss rate with and without request filtering for α = 2 (b).

chunk generates a cache miss when more than x different
chunks are requested after its previous request (it implies that
the given chunk has been removed from the cache before the
arrival of the new request).

In addition, thanks to the Poisson and the geometric dis-
tribution memory-less property, for a given chunk in class k
the number of different chunk requested in the open interval
(τn−1, τn) is independent from the number of different chunk
requested in (τn, τn+1), where {τ1, τ2, ...} is the sequence of
points at which a miss for that specific chunk occurs. The miss
sequence of a specific chunk of a content in class k determines
the miss sequence for all chunks of that content. Finally, the
global miss process is given by the superposition of the miss
sequences of different content items in all popularity classes.

A. Content request aggregation

A fundamental feature of CCN to avoid request flooding is
the aggregation, which is a mechanism taking trace of pending
chunk requests at each node and preventing the dispatch of
new requests for the same data. This mechanism should be
considered when studying the interaction between transport
and caching in content oriented systems as it impacts both
throughput and network caches behavior. Let us denote by
∆ the time window where requests for the same chunk are
aggregated and hence all requests after the first one are not
propagated.

Observation 5.2: In steady state, the effective aggregation
timescale for chunk requests of content of class k is ∆k(i) =
min(∆,RVRTTk(i)), where RVRTTk(i) is defined in Eq.(2).

Indeed, one can reasonably assume ∆ is taken larger than
the virtual round trip time in order to effectively aggregate
requests, but in practice the request aggregation is done until
the pending request is satisfied and the data is received. From
that time on, the chunk is stored in cache, and a new chunk
request has to be forwarded only if data has been removed by
the replacement policy.

The request aggregation clearly impacts the miss rate of a
given cache. In fact, when a chunk request of class k arrives at

one cache, it can generate a hit if the chunk is found in cache,
otherwise it generates a miss. In the latter case, the request is
filtered only if a previous request for the same chunk has been
emitted and the chunk has not been received yet (i.e. the time
elapsed by the previous chunk request emitted is smaller than
∆k). Let us now compute the filtering probability and thus the
filtered miss rate at the lowest level of caches in Fig.1(b).

Proposition 5.3: Given the request process defined in
sec.IV-B, the filtering probability associated to class k at the
first hop is,

pfilt,k(1) =
1− bk

1− (1− 1/σ)bk
k = 1, ...,K (4)

with bk = e−∆kλk , and ∆k = min(∆,VRTTk).
The proof is reported in [15].

B. Numerical results

This section gathers a set of numerical results obtained
by means of chunk-level simulations that corroborate the
analytical formulae derived in Sec.V.

To this purpose we developed an ad-hoc C++ event-driven
simulator, implementing data caching and forwarding as well
as the receiver driven transport protocol. We assume a simple
transport protocol using a fixed window size for chunk requests
as in Parc’s CCN. Nodes’ forwarding tables are computed
according to the publish & subscribe routing protocol im-
plemented by Carzaniga et al. in content-based networking
simulator [17]4.

We consider a population of M = 20000 content items,
organized in K = 400 classes of decreasing popularity, each
one with m = 50 items. Content popularity is Zipf distributed,
i.e. content items in class k = 1, ...,K are requested with
probability qk = c/kα, c > 0, with α ∈ (1, 2.5). Clearly, a
given content in class k is requested with probability qk/m.
We suppose content items are split in chunks of 10kB each,
and their size is geometrically distributed with average 690
chunks (6.9MB).

4Content-Based Networking www.inf.usi.ch/carzaniga/cbn



Users generate content requests according to a Poisson
process of intensity λ = 40 content/sec, and the interest
transmission window size is W = 1. We suppose a cache
of size x = 200000 chunks (2GBs) which implements the
LRU replacement policy. Notice that caches are assumed to
be initially empty, while statistics are collected in steady state
only.

In fig. 2(a) we show the miss probability as a function
of the popularity distribution for different values of the Zipf
parameter α in absence of request aggregation. Fig. 2(b)
reports the miss rate for α = 2 with and without request
filtering. Results are reported for the most popular classes
for model and simulations, so confirming model accuracy in
predicting miss probability/rate (eq.3). The major discrepancy
between model and simulations can be observed when the miss
probability is very small, that is on the most popular classes
for very skewed popularity. In such cases, cache misses are
very rare events which are difficult to observe over a limited
simulation time. We notice that the miss probability is affected
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Fig. 3. Single cache scenario. Miss probability for different cache sizes.

by content popularity for the 8 most popular classes; classes
k > 8 count few requests for the considered α values and
therefore result in miss probabilities close to 1. As expected,
for these most popular classes the miss probability increases as
α decreases; a smaller α parameter leads to a flatter popularity,
which means an increasing number of different chunks flowing
trough the cache and eventually an higher miss probability.
The miss rate decreases when requests are aggregated, with a
reduction of about 5% for classes 2 to 4.

In Fig. 3 we illustrate the impact of the cache size on the
miss probability for α = 2. Model accuracy can be appreciated
for all considered size values. As expected, miss probability
decreases as cache size increases. In fact, for a given content
size, the miss probability depends on the ratio cache size over
content size.

VI. NETWORK OF CACHES

In this section we consider the topologies reported Fig.1,
and we extend the results presented in Sec.IV to derive

analytical expressions for the miss probabilities/rates at every
node (level) of these networks (Sec.VI-A). Furthermore we
derive a closed-form expression of the stationary throughput
(Sec.VI-C) with and without request aggregation.

A. Miss rate characterization

In order to derive the stationary miss probabilities pk(i) at
hop i > 1, we need the following auxiliary result.

Lemma 6.1: Given a MMRP request arrival process
with rate λ(i) and popularity distribution qk(i) =∏i−1
j=1 pk(j)qk/

∑K
l=1

∏l−1
j=1 pl(j)ql, k = 1, ...,K, (where

qk(1) ≡ qk = c/kα, α > 1) as input at the cache at
ith (level) hop and defined Si(0, t) the number of different
chunks requested in the open interval (0, t] at the ith node,
as K → ∞, t → ∞. Be µ(i) the miss rate at node i
(µ(i) = λ(i)

∑
k pk(i)qk(i)), then it holds

1/g(i) ≡ lim
t→∞

E[Si(0, t)]
α

t
=

λ(i)

µ(i− 1)
λcσαmα−1Γ

(
1− 1

α

)α
i.e. g(i)/g ≡ µ(i − 1)/λ(i), being g(1) ≡ g. The proof is
reported in [15]. Let us now state the main result on the miss
probabilities at hop i > 1 for topology (a) in Fig.1 in absence
of aggregation.

Proposition 6.2: Given a cascade of N caches as in Fig.1(a)
and a MMRP request arrival process as described in Sec.IV-B,
then ∀ 1 < i ≤ N it holds

log pk(i) =
g(i)

g(1)

i−1∏
l=1

pk(l) log pk(1) =

i−1∏
l=1

pk(l) log pk(1)

(5)

Similarly, one can study the binary tree topology in Fig.1(b),
that has no difference with the line topology in the homoge-
neous case expect that λ(i) = 2µ(i− 1).

Corollary 6.3: Given a homogeneous binary tree with 2N−
1 caches (that is with N levels) as in Fig.1(b) and a MMRP
requests arrival process as described in Sec.IV-B, then ∀ 1 <
i ≤ N it holds

log pk(i) =
λ(i)g(i)

µ(i− 1)g(1)

i−1∏
l=1

pk(l) log pk(1) =

i−1∏
l=1

pk(l) log pk(1)

B. Miss rate characterization with request aggregation

For the topology in Fig. 1(a) the request aggregation takes
place at first cache only. In fact, as observed in V-A the
effective timescale of aggregation for requests of class k at
node i in the linear topology is ∆k(i) = min (∆,RVRTTk(i)).
Recall that RVRTTk(i) is defined as

RVRTTk(i) =

N∑
j=i

(Rj −Ri−1)(1− pk(j))

j−1∏
l=i

pk(l)

This implies that once requests are aggregated at the first
cache, in a topology with no exogenous request arrival after
the first hop, the request process is not filtered anymore. In
the rest of the paper for the ease of notation we will omit the
i in ∆k(i).



Proposition 6.4: Given a cascade of N caches as in
Fig.1(a), a MMRP request arrival process as described in
Sec.IV-B and an aggregation timescale ∆, then it holds

pfk(i) = pfk(1)
∏i−1
l=1 pk(l) = pk(i)1−pfilt,k(1). (6)

The proof is provided in [15]. For the topology in Fig.1(b) the
request aggregation can take place at several hops depending
on traffic and cache parameters.

Proposition 6.5: Given a binary tree with 2N − 1 caches
(that is with N levels) as in Fig.1(b), a MMRP request
arrival process as described in Sec.IV-B and an aggregation
timescale for content request ∆, then it holds pfk(i) =

pfk(1)
∏i−1
l=1 p

f
k(l)(1−pfilt,k(l)), i > 1,

pfilt,k(i) =
1− bk(i)

1− (1− 1/σ)bk(i)
, k = 1, ..., N

with bk(1) = e−∆kλk/m, bk(i) = e−∆k2µfk(i−1)/m, i > 1,

µfk(i) =

{
λkpk(1)(1− pfilt,k(1)) if i = 1

2µfk(i− 1)pfk(i)(1− pfilt,k(i)) if i > 1

The proof is a simple extension of Prop.6.4 (see [15]).

C. Throughput characterization

Recall the definition of the VRTT Eq.(1), where Ri denotes
the value of twice the one-way delay among node 1 and node
i (similarly among level 1 and level i nodes in the binary tree
topology), one has VRTTk =

∑N
i=1Ri(1−pk(i))

∏i−1
j=1 pk(j).

To define VRTTfk , RVRTTfk(i) in the case with request ag-
gregation (filtering), it suffices to replace the miss probabilities
in absence of filtering with those defined in Propp. 6.4/6.5.
From the VRTT formula above, one can directly derive the
formula of the average stationary throughput for content items
of class k, Xk, in absence of congestion,

X =
W

VRTTk
(7)

where W is the chunk transmission window, i.e. W chunk
requests are issued in parallel. One can easily infer then the
average content delivery time as a function of the content size
and of the average throughput. Indeed, for a content of class k,
this results to be T = (σ/W )/X . Eq.(7) is a powerful tool for
cache sizing when some throughput or content delivery time
guarantees have to be respected. In sec.VII we give hints on
cache size/link bandwidth dimensioning, once explained the
underlying performance/resources trade-off.

D. Numerical results

Let us now analyze the network case by means of chunk-
level simulations in order to assess model accuracy. Consider
the topology reported in Fig.1(b), a N = 3 levels binary
tree, where data is stored at the root of the tree while leaf
nodes are the entry points of user content requests. All links
have the same capacity of 10Gbps and the same round trip
delay equal to 2ms. Every node is equipped with a cache of
size x = 200000 chunks (2GB) implementing LRU replace-
ment policy. This topology is meant to represent a typical

aggregation network collecting requests coming from different
DSLAMs. The root of the tree serves as gateway for content
retrieved from the rest of the Internet.

The aggregate content request process at every leaf node is
Poisson distributed with intensity λ = 40 content/sec. Unless
otherwise specified, we set the chunk transmission window
size W = 1, we assume caches are initially empty, while
statistics are collected in steady state only.

Content population characteristics are the same as in the
single cache scenario (Sec. V-B) with Zipf parameter α = 2,
and chunk size is 10kB. Fig.4 compares the miss probabilities
at different nodes (from the 1st to the 3rd level) without
request aggregation. The comparison outlines the good match
between model predictions Eq.(3) at level i = 1, Eq.(5) at level
i > 1 and simulations. From Fig.4 it can be also observed
how content popularity changes along the path. Requests for
content items of the most popular class are almost completely
served by caches of first nodes. As a consequence, the miss
probability for class k = 1 is nearly 1 at upper levels. Content
items of class 2 are mainly cached at first and second level,
whereas less popular classes, represented in the queue of the
curves, are very rarely cached as hardly requested.
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Fig. 4. Miss probability at different levels for topology Fig.1(b), with no
filtering.

Fig. 5 reports the miss rate as a function of content popu-
larity with and without request aggregation. Besides the good
match between analytical and simulation values, it is important
to remark that the miss rate reduction, already observed in
Sec. V-B for the single cache scenario, is more significant at
higher levels of the network, with a maximum decrease of
about 20% at level i = 3.

In Fig.6 we show the virtual round trip time, VRTTk, as
a function of content popularity with and without request
aggregation. The virtual round trip time measures the average
distance between the user and the content as a function of
the miss probabilities along the path. Therefore, it represents
a suitable metric to evaluate data transfer performance, as it
quantifies average chunk delivery time.

As previously noticed, chunks of the most popular content
items are cached at first level nodes, so that VRTT1 ≈ 2ms,



 0

 200

 400

 600

 800

 1000

 0  2  4  6  8  10  12  14  16  18  20

M
is

s 
ra

te
, 
µ

 [
c
h
u
n
k
/s

]

Class id (k)

 1
st

 Level 
 2

nd
 Level 

 3
rd

 Level 
 Simulation 

 Model 

 0

 200

 400

 600

 800

 1000

 0  2  4  6  8  10  12  14  16  18  20

M
is

s 
ra

te
, 
µ

 [
c
h
u
n
k
/s

]

Class id (k)

 1
st

 Level 
 2

nd
 Level 

 3
rd

 Level 
 Simulation 

 Model 

Fig. 5. Miss rate with filtering disabled (on the left) and enabled (on the right), for the binary tree topology in Fig.1(b).

whereas the rarest items are not cached within the network,
with a consequent round trip time of about 8ms (4 hops).
The figure also highlights that the content aggregation has
no or little impact on the stationary VRTT, even if it helps
in strongly reducing the chunk request traffic as also showed
in Fig. 5. The mean stationary throughput is reported in
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Fig. 6. VRTT experienced by end-users in topology Fig.1(b).
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Fig. 7. User’s throughput expressed in Mbps in topology Fig.1(b) varying
the window size of the transport protocol.

Fig.7 as a function of content popularity for several values

of the chunk transmission window size W , in a scenario
where requests are not aggregated. As expected from Eq.
(7), the throughput decreases as k increases, because of the
VRTT increase. Similarly, with larger windows sizes, higher
throughput can be achieved as multiple chunks can be retrieved
in parallel. The throughput gain due to parallel downloading
is more important for most popular classes due to a smaller
VRTT.

VII. DIMENSIONING AND PERFORMANCE TRADE-OFFS

Bandwidth and storage capacity are the most critical re-
sources in a content-centric architecture, and represent the
network cost for an operator to deploy this kind of distribution
infrastructures. On the other hand, it is of significant interest
to establish a direct link between resources and performance.
The model can be used as a tool to quantify network costs
for a provider, to guarantee certain performance to users or,
inversely, to predict performance users perceive for a given
amount of resource devoted to a specific service.

As an example, consider the binary tree topology in
Fig.1(b), representative of a typical aggregation network,
where the root of the tree can serve as data termination
point for content retrieved from the rest of the Internet.
Suppose all caches have the same storage capacity and
consider users of a web media application, where content
popularity is Zipf distributed with α = 1.6 and the average
content size is 14MB (See [18]). In Fig.8 we report the
traffic at the gateway (a) (total miss rate flowing upstream
in the network) and the users’ throughput (b) as a function
of content popularity for cache size ranging from 1GB to
16GB. Fig.8(a) shows the throughput-storage capacity trade-
off: given a target throughput, the minimum storage capacity
needed to provide minimum performance can be evaluated or
inversely, given a the storage size, the maximum expected miss
rate or minimum expected throughput. In Fig.8(b) we quantify,
through the model, the user performance-network cost trade-
off : we accurately predict how much users’ throughput can
be increased with additional network resources. Moreover, it is
possible to deduce some system properties which can serve as
design guidelines: e.g. (i) request aggregation has a significant
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Fig. 8. Total miss rate (on the left) and mean stationary throughput (on the right) as a function of the cache size in the binary tree scenario.

impact on the bandwidth required at the gateway only for small
caches (1 and 2GB); (ii) the maximum throughput is limited
to 40Mbps even for very large caches as W = 1.

VIII. CONCLUSIONS

Content-centric network proposals bring fresh thinking into
Internet architecture design by re-centering communication
principles around current usage, mostly content dissemination
and retrieval. However, a comprehensive study of content-
centric networks still lacks and key features of such systems
are poorly understood.

Unlike traditional end-to-end transport, in CCN data transfer
is realized through a receiver-centric paradigm, whose per-
formance is closely tied to network cache dynamics. Indeed,
storage capabilities are embedded at network level and every
node acts as a cache for flowing data.

In this paper we developed an analytical model for the
performance evaluation of content transfer in CCN that allows
an explicit characterization of steady state dynamics. A closed
form expression for the stationary throughput, and hence for
the content delivery time, is provided, showing the depen-
dence from key system parameters such as content popularity,
content size and cache size. Differently from previous work,
our model allows to capture chunk-level dynamics and thus
to account for the correlation in the content request process
either temporal, due to the receiver-driven transport protocol,
and spatial, as an effect of content request aggregation.

Thanks to these features, the analytical framework proposed
in this paper constitutes an essential building block for the
design of a receiver-driven control transport protocol aimed at
avoiding network congestion while realizing specific fairness
criteria. Moreover, the model is suitable to account for spe-
cific forwarding techniques employing multiple paths to route
content requests. Other possible future research directions are
the study of system time evolution, useful for analyzing flash
crowd scenarios, and of different cache replacement policies.
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[13] P. R. Jelenković and X. Kang, “Characterizing the miss sequence of the
lru cache,” in in Proc. of ACM SIGMETRICS, MAMA Workshop, 2008.

[14] T. E. Stern and A. I. Elwalid, “Analysis of separable markov-modulated
rate models for information-handling systems,” Advances in Applied
Probability, vol. 23, no. 1, pp. 105–139, 1991.

[15] G. Carofiglio, M. Gallo, L. Muscariello, and D. Perino, “Modeling data
transfer in conten-centric networking (extended version),” in Research
report, available at http://perso.rd.francetelecom.fr/muscariello, 2011.

[16] E. Chlebus and J. Brazier, “Nonstationary poisson modeling of web
browsing session arrivals,” Information Processing Letters, vol. 102,
no. 5, pp. 187 – 190, 2007.

[17] A. Carzaniga, M. Rutherford, and A. Wolf, “A routing scheme for
content-based networking,” in Proc. of INFOCOM 2004.

[18] L. Cherkasova and M. Gupta, “Characterizing locality, evolution, and
life span of accesses in enterprise media server workloads,” in Proc. of
ACM NOSSDAV, 2002.


